e. board blocks or space fillers off part of the hive body), the colony strength estimation before wintering, winter monitoring, and last but not least, appropriate integrated pest management. Proper estimation of the Varroa infestation level should be performed prior to treatment. The consequences of poor beekeeping practices on honey bee health can be addressed by proper training of beekeepers. https://www.selleckchem.com/products/gdc-0068.html An online tool was developed and published for beekeepers allowing them to evaluate the effect of their management practices on colony health.As a new type of environmental pollutant, microplastics (MPs) are widely present in freshwater systems. The ecological risks of MPs pollution in nature reserves and the correlation between human activities and the abundance of MPs are still unclear. This is the first survey of MPs in freshwater systems in Northeast China. The content and composition of MPs in 19 water samples were investigated in Chagan lake and Xianghai. The abundance of MPs samples in Chagan Lake averages 3.61 ± 2.23 particles/L, and in Xianghai averages 0.29 ± 0.11 particles/L. The main types of MPs in Chagan Lake are PA (23.7%) and PS (53.2%); while in Xianghai are PP (56%) and PS (32.7%). Foam, white and less then 1 mm are the main shapes, colors and sizes of Chagan Lake MPs, while of Xianghai are film, transparent and less then 1 mm. This may be related to the well-developed tourism and fishing industry (foam and fishing line) in Chagan Lake and aquaculture in Xianghai (foam and plastic film). The hazard index (HI) indicated a Hazard Level III for MPs pollution in Chagan Lake and Xianghai. Pollution load index (PLI) and potential ecological risk index (RI) indicate that the pollution risk of MPs polymers in the two places is relatively small. The degree of human activity is quantified to analyze the correlation of MPs abundance. The quantified scores are positively correlated with the abundance of MPs at different sampling points (Chagan lake P less then 0.05, 95% Cl; Xianghai P less then 0.05, 95% Cl).The transport of tetracycline possessed a great challenge in its environmental applications. This study looked at how various low-molecular-weight organic acids (LMWOAs) affect the transport of tetracycline in environments. To that end, four LMWOAs were employed in experiments; acetic acid, malonic acid, malic acid, and citric acid. It was observed that LMWOAs promoted the tetracycline passage in presence of various experimental environments. The LMWOAs steric hindrance and deposition competition facilitated tetracycline transport at pH 5.0. The other deposition mechanism for tetracycline was the electrostatic repulsion between tetracycline and sand enhanced by deprotonated LMWOAs at pH 7.0. Moreover, the enhanced effects of LMWOAs on tetracycline mobility were intensively dependent on LMWOA type with more functional groups (e.g. carboxyl and hydroxyl groups) and larger molecular size supported stronger deposition competition, steric hindrance as well as electrostatic repulsion. Additionally, cation-bridging played a vital role for the enhanced effects of LMWOAs on tetracycline transport with divalent cations (e.g., Ca2+ and Pb2+). Interestingly, tetracycline exhibited a higher mobility in the presence of Ca2+ relative to Pb2+ regardless of LMWOAs-free or LMWOAs-addition. This phenomenon was attributed to the fact that Pb2+ has a greater affinity with tetracycline and LMWOAs than Ca2+. Furthermore, under the shadow of numerous LMWOAs, the non-equilibrium two site transportation model was employed to investigate the movement of tetracycline in porous saturated media. The present study suggests that LMWOAs may be important considerations in assessing the antibiotic passage in soil as well as groundwater.Rice production in China is constrained by excessive water consumption, labor shortage, large environmental footprint, and low economic profit. Rice ratooning is a promising practice to increase famers' profit with higher resource use efficiency and less environmental impact compared with other rice cropping systems. However, there is limited information on the differences in energy use efficiency, water and labor productivity, environmental footprint, and economic return between main crop (MC) and ratoon crop (RC) in this cropping system. This study was conducted to compare the system performance between the two crops of ratoon rice using on-farm survey data. Average grain yield was 8.40 and 4.55 t ha-1 for MC and RC, respectively. Although RC produced 45.9% lower grain yield, it had 57.3% less total energy input and 71.0% lower total production cost than MC, which resulted in a significantly higher energy use efficiency, net energy ratio, net economic return and benefit-to-cost ratio. Lower total energy input and production cost of RC was mainly attributed to the reduction in fertilizer application and labor input, respectively compared with MC. In addition, both labor and water productivity of RC was significantly higher than those of MC. Furthermore, the global warming potential (GWP) and yield-scaled GWP of RC was 59.3% and 23.4% lower than those of MC, respectively, due to lower agronomic inputs and GHGs emissions. Overall, our results suggested that RC had higher resource use efficiency, better economic performance, and less environment impact compared with MC.Taking advantage of the unique properties of reduced graphene oxide (rGO) and monoclinic crystalline titanium dioxide (TiO2(B)) nanomaterials, a novel rGO-TiO2(B) composite membrane (MrGO-TiO2(B)) was constructed by UV-light-assisted self-assembly of rGO and TiO2 on a nylon membrane. The structure of MrGO-TiO2(B) was characterized by scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Through 2D/2D self-assembly, rGO and TiO2(B) were more tightly combined, and then MrGO-TiO2(B) exhibited outstanding photocatalytic activity and an excellent methylene blue (MB) removal rate. MB was completely removed in 60 min at a constant rate of 0.042 min-1 by the MrGO-TiO2(B)/H2O2/MB system upon solar simulating Xe lamp irradiation. The synergistic effect of rGO and TiO2(B) facilitated the photocatalytic degradation of MB. TiO2(B) was excited and generated electrons and holes upon irradiation. Some electrons migrated to the surface of TiO2(B) to react with H2O2 to produce hydroxyl radicals (OH), while the other electrons migrated to the surface of rGO to react with H2O2, producing OH. In addition, a number of superoxide radicals (O2-) was detected. The holes in the valence band of TiO2(B) directly oxidized MB. The catalytic activity of MrGO-TiO2(B) toward MB degradation remained stable after four rounds of reuse. Therefore, the surface modification of a nylon membrane with TiO2(B) and rGO can serve as a promising route to fabricate photocatalytic membranes for use in the water treatment industry.Fe(II)-activated sodium percarbonate (SPC) was an emerging technology for enhancing the dewaterability of waste activated sludge, and its operational parameters were systematically explored. The results showed that after the treatment by 1.20 mmol/g VSS SPC and 1.44 mmol/g VSS Fe(II) at initial pH 3.0, the water content and specific resistance to filtration remained at 76.05 ± 0.36% and 2.57 ± 0.08 × 1012 m·kg-1, respectively. The acid condition was instrumental in sludge dewatering, whereas overdosing Fe(II) or SPC imposed adverse effect. The conversion of EPS fractions was examined to elucidate the underlying mechanism, which indicated that a coexisting oxidation/flocculation process accounted for the improvement of sludge dewaterability. The stronger oxidative ·OH degraded the hydrophilic compounds (proteins and carbohydrates) of tightly-bound extracellular polymeric substance and the dissolved multivalence iron promoted solid-liquid separation. Additionally, the theoretical analysis (DFT calculation) demonstrated that the oxygen- and nitrogen-containing groups of EPS resulted in high-water holding capacity of sludge. The difficulty of destroying hydrophilic functional groups followed C=O > C-N > C-O during oxidation process. Moreover, Fe(II)/SPC treatment performed well in coliforms inactivation and phytotoxicity reduction compared with different ·OH-based advanced oxidation processes for sludge conditioning.Soil carbon (SC) is a key component of the carbon cycle and plays an important role in climate change; however, quantitatively assessing SC dynamics at the regional scale remains challenging. Earth system model (ESM) that considers multiple environmental factors and spatial heterogeneity has become a powerful tool to explore carbon cycle-climate feedbacks, although the performance of the ESM is diverse and highly uncertain. Thus, identifying reliable ESMs is a prerequisite for better understanding the response of SC dynamics to human activity and climate change. The 16 ESMs that participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were employed to evaluate the skill performance of SC density simulation by comparison with reference data from the International Geosphere-Biosphere Programme Data and Information System (IGBP-DIS). Although ESMs generally reflect spatial patterns with lower SC in northwest China and higher SC in southeast China, 11 of 16 ESMs underestimated the SC in China, and 5 of 16 ESMs overestimated the SC density as most ESMs had large discrepancies in capturing the SC density in the northern high latitudes of China and the Qinghai-Tibet Plateau. According to a series of model performance statistics, SC simulated by Institute Pierre Simon Laplace (IPSL) Coupled Model had a close spatial pattern with IGBP-DIS and showed higher skills for SC predictions in China relative to other CMIP5 ESMs. The multimodel ensemble average obtained by IPSL family ESMs showed that SC density exhibited increasing trends under both the RCP4.5 scenario and RCP8.5 scenario. The SC density increased slowly under RCP8.5 compared with that under RCP4.5 and even displayed a decreasing trend in the late 21st century. The findings of this study can provide a reference for identifying the shortcomings of SC predictions in China and guide SC parameterization improvement in ESMs.Lakes and vegetation are important components of the hydro-ecological environment and sensitive indicators of anthropogenic climate change and human activities. For the first time, the lake area, vegetation cover change (obtained from Landsat satellite images), terrestrial water storage (TWS; estimated from the gravity recovery and climate experiment), and hydrochemistry, stable isotopes of different waterbodies were combined to analyze the long-term evolution and controlling factors of lake area and vegetation cover in the Nenjiang River basin, China. Between 1985 and 1999, the lake area experienced natural shrinkage due to climatic and hydrological changes, whereas artificial shrinkage related to increased human activities dominated during 2000-2019. The normalized difference vegetation index (NDVI) increased during 1988-1999 and was affected by hydrometeorological factors in the same year and lake area in the previous year. The rate of increase in the NDVI accelerated during 2000-2012 owing to the impact of human activities which is reflected by GDP, and the related artificial shrinkage of the lake area.