The primary somatosensory (S1) cortex plays a key role in distinguishing different sensory stimuli. Vibrotactile touch information is conveyed from the periphery to the S1 cortex through three major classes of mechanoreceptors slowly adapting type 1 (SA1), rapidly adapting (RA), and Pacinian (PC) afferents. It has been a long-standing question whether specific populations in the S1 cortex preserve the peripheral segregation by the afferent submodalities. Here, we investigated whether S1 neurons exhibit specific responses to two distinct vibrotactile stimuli, which excite different types of mechanoreceptors (e.g., SA1 and PC afferents). Using in vivo two-photon microscopy and genetically encoded calcium indicator, GCaMP6s, we recorded calcium activities of S1 L2/3 neurons. https://www.selleckchem.com/products/cerdulatinib-prt062070-prt2070.html At the same time, static ( less then 1 Hz) and dynamic (150 Hz) vibrotactile stimuli, which are known to excite SA1 and PC, respectively, were pseudorandomly applied to the right hind paw in lightly anesthetized mice. We found that most active S1 neurons responded to both static and dynamic stimuli, but more than half of them showed preferred responses to either type of stimulus. Only a small fraction of the active neurons exhibited specific responses to either static or dynamic stimuli. However, the S1 population activity patterns by the two stimuli were markedly distinguished. These results indicate that the vibrotactile inputs driven by excitation of distinct submodalities are converged on the single cells of the S1 cortex, but are well discriminated by population activity patterns composed of neurons that have a weighted preference for each type of stimulus.All living beings on earth have an important mechanism of 24-h periodicity, which controls their physiology, metabolism, and behavior. In humans, 24-h periodicity is regulated by the superchiasmatic nucleus (SCN) through external and environmental cues. Peripheral organs demonstrate circadian rhythms and circadian clock functions, and these are also observed in cultured cell lines. Every cell contains a CLOCK BMAL1 loop for the generation of circadian rhythms. In this review, we focused on cell autonomous circadian rhythms in immune cells, the inflammatory diseases caused by disruption of circadian rhythms in hormones, and the role of clock genes in inflammatory diseases.Till the 21st century, fatty acids were considered as merely building blocks for triglycerides, phospholipids, or cholesteryl esters. However, the discovery of G protein-coupled receptors (GPCRs) for free fatty acids at the beginning of the 21st century challenged that idea and paved way for a new field of research, merged into the field of receptor pharmacology for intercellular lipid mediators. Among the GPCRs for free fatty acids, free fatty acid receptor 4 (FFA4, also known as GPR120) recognizes long-chain polyunsaturated fatty acids such as DHA and EPA. It is significant in drug discovery because it regulates obesity-induced metaflammation and GLP-1 secretion. Our study reviews information on newly developed FFA4 agonists and their application in pathophysiologic studies and drug discovery. It also offers a potency comparison of the FFA4 agonists in an AP-TGF-α shedding assay.COVID-19 has caused extensive human casualties with significant economic impacts around the globe, and has imposed new challenges on health systems worldwide. Over the past decade, SARS, Ebola, and Zika also led to significant concerns among the scientific community. Interestingly, the SARS and Zika epidemics ended before vaccine development; however, the scholarly community and the pharmaceutical companies responded very quickly at that time. Similarly, when the genetic sequence of SARSCoV-2 was revealed, global vaccine companies and scientists have stepped forward to develop a vaccine, triggering a race toward vaccine development that the whole world is relying on. Similarly, an effective and safe vaccine could play a pivotal role in eradicating COVID-19. However, few important questions regarding SARS-CoV-2 vaccine development are explored in this review.Relapsing fever (RF) is caused by several species of Borrelia; all, except two species, are transmitted to humans by soft (argasid) ticks. The species B. recurrentis is transmitted from one human to another by the body louse, while B. miyamotoi is vectored by hard-bodied ixodid tick species. RF Borrelia have several pathogenic features that facilitate invasion and dissemination in the infected host. In this article we discuss the dynamics of vector acquisition and subsequent transmission of RF Borrelia to their vertebrate hosts. We also review taxonomic challenges for RF Borrelia as new species have been isolated throughout the globe. Moreover, aspects of pathogenesis including symptomology, neurotropism, erythrocyte and platelet adhesion are discussed. We expound on RF Borrelia evasion strategies for innate and adaptive immunity, focusing on the most fundamental pathogenetic attributes, multiphasic antigenic variation. Lastly, we review new and emerging species of RF Borrelia and discuss future directions for this global disease.Detecting fluorescence in the second near-infrared window (NIR-II) up to ∼1,700 nm has emerged as a novel in vivo imaging modality with high spatial and temporal resolution through millimeter tissue depths. Imaging in the NIR-IIb window (1,500-1,700 nm) is the most effective one-photon approach to suppressing light scattering and maximizing imaging penetration depth, but relies on nanoparticle probes such as PbS/CdS containing toxic elements. On the other hand, imaging the NIR-I (700-1,000 nm) or NIR-IIa window (1,000-1,300 nm) can be done using biocompatible small-molecule fluorescent probes including US Food and Drug Administration-approved dyes such as indocyanine green (ICG), but has a caveat of suboptimal imaging quality due to light scattering. It is highly desired to achieve the performance of NIR-IIb imaging using molecular probes approved for human use. Here, we trained artificial neural networks to transform a fluorescence image in the shorter-wavelength NIR window of 900-1,300 nm (NIR-I/IIa) to an image resembling an NIR-IIb image.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-09-10 (火) 22:26:09