Meanwhile, the accuracy of inferring the genotypes of the minor contributor decreased as its proportion in the mixture decreased. Moreover, the estimated mixture ratio was almost equal to the actual ratio between 11 and 16. The method proposed in this study provides a new paradigm for mixture interpretation, especially for inferring contributor profiles of evenly balanced mixtures and the major contributor profile of unevenly balanced mixtures.Acute myeloid leukemia (AML) is the most common type of leukemia in adults, accounting for 30% of all adult leukemia cases. While there have been recent improvements in the prognosis of the disease, the prognosis remains grim, and further understanding of AML and the development of new therapeutic agents is critical. This study aimed to investigate the potential interaction between colorectal cancer (CRC) cells and AML cells. Unexpectedly, we found that CRC cell-derived conditioned medium (CM) showed anticancer activities in AML cells by inducing apoptosis and differentiation. Mechanistic studies suggest that these phenotypes are closely associated with the suppression of PI3K/AKT/mTOR and MAPK survival signaling, the upregulation of myeloid differentiation-promoting transcription factors c/EBPα and PU.1, and the augmentation of executioner caspases-3/7. Importantly, bioinformatic analyses of our gene expression profiling data, including that derived from principal component analysis (PCA), volcano plots, boxplots, heat maps, kyoto encyclopedia of genes and genomes (KEGG) pathways, and receiver operating characteristic (ROC) curves, which evaluate gene expression profiling data, provided deeper insight into the mechanism in which CRC-CM broadly modulates apoptosis-, cell cycle arrest-, and differentiation-related gene expression, such as BMF, PLSCR3, CDKN1C, and ID2, among others, revealing the genes that exert anticancer effects in AML cells at the genomic level. Collectively, our data suggest that it may be worthwhile to isolate and identify the molecules with tumor-suppressive effects in the CM, which may help to improve the prognosis of patients with AML.Aim To investigate genes and pathways involved in differential glucocorticoid (GC) responsiveness in human trabecular meshwork (HTM) cells using RNA sequencing. Methods Using paired human donor eyes, human organ-cultured anterior segment (HOCAS) was established in one eye to characterize GC responsiveness based on intra ocular pressure (IOP) change and, in the other eye, primary HTM cell culture was established. For RNA sequencing, total RNA extracted from GC-responder (GC-R) and non-responder (GC-NR) cells after dexamethasone (DEX) or ethanol (ETH) treatment for 7d was used. Differentially expressed genes (DEGs) were compared among five groups and validated. Results In total, 616 and 216 genes were identified as significantly dysregulated in Group #1 and #2 (#1 ETH vs. DEX-treated GC-R; #2 ETH vs. DEX-treated GC-NR), respectively. Around 80 genes were commonly dysregulated in Group #3 (overlapping DEGs between #1 and #2), whereas 536 and 136 genes were uniquely expressed in GC-R (#4) and GC-NR HTM (#5) cells, respectively. Pathway analysis revealed that WNT signaling, drug metabolism cytochrome p450, cell adhesion, TGF-β signaling, and MAPK signaling were associated with GC responsiveness. Conclusion This is the first study reporting distinct gene signatures and their associated pathways for GC-R and GC-NR HTM cells. WNT and MAPK signaling are potential therapeutic targets for the management of GC-induced glaucoma.Tet1 protects against house dust mite (HDM)-induced lung inflammation in mice and alters the lung methylome and transcriptome. In order to explore the role of Tet1 in individual lung epithelial cell types in HDM-induced inflammation, we established a model of HDM-induced lung inflammation in Tet1 knockout and littermate wild-type mice, then studied EpCAM+ lung epithelial cells using single-cell RNA-seq analysis. https://www.selleckchem.com/products/cpi-613.html We identified eight EpCAM+ lung epithelial cell types, among which AT2 cells were the most abundant. HDM challenge altered the relative abundance of epithelial cell types and resulted in cell type-specific transcriptomic changes. Bulk and cell type-specific analysis also showed that loss of Tet1 led to the altered expression of genes linked to augmented HDM-induced lung inflammation, including alarms, detoxification enzymes, oxidative stress response genes, and tissue repair genes. The transcriptomic regulation was accompanied by alterations in TF activities. Trajectory analysis supports that HDM may enhance the differentiation of AP and BAS cells into AT2 cells, independent of Tet1. Collectively, our data showed that lung epithelial cells had common and unique transcriptomic signatures of allergic lung inflammation. Tet1 deletion altered transcriptomic networks in various lung epithelial cells, which may promote allergen-induced lung inflammation.Advanced differential gene expression analysis requires high-quality RNA. However, isolating intact pancreatic RNA is challenging due to abundant pancreatic ribonucleases, which limits efficient downstream gene expression analysis. RNAlater treatment reduces endogenous ribonucleases effects through either pre-organ excision via organ mass or bile duct direct injection or organ mass injection post-isolation. We compared RNA extraction protocols to establish a reproducible and effective pancreatic RNA extraction method to obtain high RNA integrity number (RIN) values from healthy and streptozotocin (STZ)-induced diabetic rats for gene expression analyses. Different methods were tested focusing on RNase activity inhibition using RNAlater (Qiagen) pre-harvest of the pancreatic tissue, and extracted RNA quality and concentration were analyzed using NanoDrop spectrophotometer, Agilent Bioanalyzer, and RT-PCR. Inclusion of several pre- and post-excision modifications in the RNeasy Mini Kit (Qiagen) protocol resulted in RIN values more than two-fold higher compared to those using the standard protocol. Additionally, RT-PCR amplification of the housekeeping gene, β-actin, revealed no differences in extracted RNA quality from healthy and STZ-induced diabetic rats. We compared and developed a more effective and reproducible pancreatic RNA extraction method from healthy and diabetic rats, which resulted in RNA of superior quality and integrity and is suitable for complex molecular investigations.Mitochondrial DNA (mtDNA) damaged by reactive oxygen species (ROS) triggers so far poorly understood processes of mtDNA maintenance that are coordinated by a complex interplay among DNA repair, DNA degradation, and DNA replication. This study was designed to identify the proteins involved in mtDNA maintenance by applying a special long-range PCR, reflecting mtDNA integrity in the minor arc. A siRNA screening of literature-based candidates was performed under conditions of enforced oxidative phosphorylation revealing the functional group of polymerases and therein polymerase ζ (POLZ) as top hits. Thus, POLZ knockdown caused mtDNA accumulation, which required the activity of the base excision repair (BER) nuclease APE1, and was followed by compensatory mtDNA replication determined by the single-cell mitochondrial in situ hybridization protocol (mTRIP). Quenching reactive oxygen species (ROS) in mitochondria unveiled an additional, ROS-independent involvement of POLZ in the formation of a typical deletion in the minor arc region. Together with data demonstrating the localization of POLZ in mitochondria, we suggest that POLZ plays a significant role in mtDNA turnover, particularly under conditions of oxidative stress.Triple quadrupole mass spectrometry coupled to liquid chromatography (LC-TQ-MS) can detect and quantify modified nucleosides present in various types of RNA, and is being used increasingly in epitranscriptomics. However, due to the low resolution of TQ-MS and the structural complexity of the many naturally modified nucleosides identified to date (>160), the discrimination of isomers and mass-analogs can be problematic and is often overlooked. This study analyzes 17 nucleoside standards by LC-TQ-MS with separation on three different analytical columns and discusses, with examples, three major causes of analyte misidentification structural isomers, mass-analogs, and isotopic crosstalk. It is hoped that this overview and practical examples will help to strengthen the accuracy of the identification of modified nucleosides by LC-TQ-MS. Hepatocellular carcinoma (HCC) is the predominant form of liver cancer and is accompanied by a complex regulatory network. Increasing evidence suggests that an abnormal gene expression of is associated with HCC progression. However, the molecular mechanism by which non-coding RNAs (ncRNAs) regulate remains elusive. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data were used to perform differential expression analysis and prognostic analysis. We used the Encyclopedia of RNA Interactomes (ENCORI) database to predict candidate miRNAs and lncRNAs that may bind to . Subsequently, the comprehensive analysis (including expression analysis, correlation analysis, and survival analysis) identified ncRNAs that contribute to overexpression. was found to be upregulated in the majority of tumor types and associated with a poor prognosis. Hsa-miR-101-3p was identified as a target miRNA of . Additionally, SNHG6 and MALAT1 were identified as upstream lncRNAs of hsa-miR-101-3p. Meanwhile, correlation analysis revealed that expression was significantly associated with the infiltration of several immune cell types in HCC. SNHG6 or MALAT1/hsa-miR-101-3p/ axis were identified as potential regulatory pathways in the progression of HCC.SNHG6 or MALAT1/hsa-miR-101-3p/EZH2 axis were identified as potential regulatory pathways in the progression of HCC.Partition systems are widespread among bacterial chromosomes. They are composed of two effectors, ParA and ParB, and cis acting sites, parS, located close to the replication origin of the chromosome (oriC). ParABS participate in chromosome segregation, at least in part because they serve to properly position sister copies of oriC. A fourth element, located at cell poles, is also involved in some cases, such as HubP for the ParABS1 system of Vibrio cholerae chromosome 1 (ch1). The polar anchoring of oriC of ch1 (oriC1) is lost when HubP or ParABS1 are inactivated. Here, we report that in the absence of HubP, ParABS1 actively maintains oriC1 at mid-cell, leading to the subcellular separation of the two ch1 replication arms. We further show that parS1 sites ectopically inserted in chromosome 2 (ch2) stabilize the inheritance of this replicon in the absence of its endogenous partition system, even without HubP. We also observe the positioning interference between oriC1 and oriC of ch2 regions when their positionings are both driven by ParABS1. Altogether, these data indicate that ParABS1 remains functional in the absence of HubP, which raises questions about the role of the polar anchoring of oriC1 in the cell cycle.(1) Background The basic mechanism of store-operated Ca2+ entry (SOCE) in bovine hepatocytes (BHEC) is related to the activation of STIM1 and Orai1. The effect of STIM1- and Orai1-dependent calcium ion signaling on the NF-κB signaling pathway is unclear. (2) Methods In this study, the expression of STIM1 and Orai1 in BHEC was regulated. RT-qPCR, Western blotting, and an immunofluorescence antibody (IFA) assay were performed to elucidate the effect of inflammation and endoplasmic reticulum stress (ERS) in BHEC. (3) Results First of all, in this study, RT-PCR and Western blotting were used to detect the levels of IκB, NF-κB, and inflammatory factors (IL-6, IL-8, and TNF-α) and the expression of genes and proteins related to ERS (PERK, IRE1, ATF6, GRP78, and CHOP), which reached peak levels simultaneously when BHEC were treated with 16 μg/mL LPS for 1 h. For STIM1, we overexpressed STIM1 in BHEC by using plasmid transfection technology. The results showed that after overexpression of STIM1, the gene and protein expression of STIM1 levels were significantly upregulated, and the expression of Orai1 on the cell membrane was also upregulated, which directly activated the SOCE channel and induced inflammation and ERS in BHEC.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-09-10 (火) 22:49:19