essionals should provide interventions to ease burden and distress amongst caregivers of PWD. Plasma is a potentially rich source of protein biomarkers for disease progression and drug response. Large multi-center studies are often carried out to increase the number of samples analyzed in a given study. This may increase the chances of variation in blood processing and handling, leading to altered proteomic results. This study evaluates the impact of blood processing variation on LC-MS/MS proteomic analysis of plasma. Initially two batches of patient plasma samples (120 and 204 samples, respectively) were analyzed using LC-MS/MS shotgun proteomics. Follow-up experiments were designed and carried out on healthy donor blood in order to examine the effects of different centrifugation conditions, length of delay until first centrifugation, storage temperature and anticoagulant type on results from shotgun proteomics. Variable levels of intracellular proteins were observed in subsets of patient plasma samples from the initial batches analyzed. This observation correlated strongly with the site of coleased intracellular proteins in plasma. Accounting for these effects can be important both at study design and data analysis stages. This understanding will be valuable to incorporate in the planning of protein-based biomarker discovery efforts in the future. Next Generation Sequencing (NGS) is the fundament of various studies, providing insights into questions from biology and medicine. Nevertheless, integrating data from different experimental backgrounds can introduce strong biases. In order to methodically investigate the magnitude of systematic errors in single nucleotide variant calls, we performed a cross-sectional observational study on a genomic cohort of 99 subjects each sequenced via (i) Illumina HiSeq X, (ii) Illumina HiSeq, and (iii) Complete Genomics and processed with the respective bioinformatic pipeline. We also repeated variant calling for the Illumina cohorts with GATK, which allowed us to investigate the effect of the bioinformatics analysis strategy separately from the sequencing platform's impact. The number of detected variants/variant classes per individual was highly dependent on the experimental setup. https://www.selleckchem.com/products/gsk-2837808A.html We observed a statistically significant overrepresentation of variants uniquely called by a single setup, indicating potential systematic biases. Insertion/deletion polymorphisms (indels) were associated with decreased concordance compared to single nucleotide polymorphisms (SNPs). The discrepancies in indel absolute numbers were particularly prominent in introns, Alu elements, simple repeats, and regions with medium GC content. Notably, reprocessing sequencing data following the best practice recommendations of GATK considerably improved concordance between the respective setups. We provide empirical evidence of systematic heterogeneity in variant calls between alternative experimental and data analysis setups. Furthermore, our results demonstrate the benefit of reprocessing genomic data with harmonized pipelines when integrating data from different studies.We provide empirical evidence of systematic heterogeneity in variant calls between alternative experimental and data analysis setups. Furthermore, our results demonstrate the benefit of reprocessing genomic data with harmonized pipelines when integrating data from different studies. Efficient regulation of bacterial genes in response to the environmental stimulus results in unique gene clusters known as operons. Lack of complete operonic reference and functional information makes the prediction of metagenomic operons a challenging task; thus, opening new perspectives on the interpretation of the host-microbe interactions. In this work, we identified whole-genome and metagenomic operons via MetaRon (Metagenome and whole-genome opeRon prediction pipeline). MetaRon identifies operons without any experimental or functional information. MetaRon was implemented on datasets with different levels of complexity and information. Starting from its application on whole-genome to simulated mixture of three whole-genomes (E. coli MG1655, Mycobacterium tuberculosis H37Rv and Bacillus subtilis str. 16), E. coli c20 draft genome extracted from chicken gut and finally on 145 whole-metagenome data samples from human gut. MetaRon consistently achieved high operon prediction sensitivity, specificity and tabolic trends will significantly reduce the data volume to more precise data. Furthermore, the identification of metabolic pathways associated with the occurrence of type 2 diabetes (T2D) also presents another dimension of analyzing the human gut metagenome. Presumably, this study is the first organized effort to predict metagenomic operons and perform a detailed analysis in association with a disease, in this case type 2 diabetes. The application of MetaRon to metagenomic data at diverse scale will be beneficial to understand the gene regulation and therapeutic metagenomics. Some types of sedentary behaviors tend to cluster in individuals or groups of older adults. Insight into how these different types of sedentary behavior cluster is needed, as recent research suggests that not all types of sedentary behavior may have the same negative effects on physical and mental health. Therefore, the aim of this study was to identify sex-specific typologies of older adults' sedentary behavior, and to examine their associations with health-related and socio-demographic factors. Cross-sectional data were collected as part of the BEPAS Seniors, and the Busschaert study among 696 Flemish older adults (60+). Typologies of self-reported sedentary behavior were identified using latent profile analysis, and associations with health-related and sociodemographic factors were examined using analyses of variances. Five distinct typologies were identified from seven sedentary behaviors (television time, computer time, transport-related sitting time, sitting for reading, sitting for hobbies, sittiavior.Although causal direction between identified typologies and health outcomes remains uncertain, our results suggests that future interventions should better focus on specific types of sedentary behavior (e.g. television time), or patterns of sedentary behavior, rather than on total sedentary behavior.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-09-10 (火) 22:32:07