Various abiotic and biotic agents disturb the fine balance between cellular oxidants and antioxidants. https://www.selleckchem.com/products/gant61.html The resulting oxidative stress occurs either due to the increasing levels of reactive oxygen species (ROS) or weak antioxidative system that cannot scavenge ROS burst. In addition to their harmful role, ROS can also act as signaling molecules, and oxidative stress is often the initial step in the programmed cell death. Here we describe two parameters of oxidative stress that can be measured spectrophotometrically lipid peroxidation via the content of the by-product malondialdehyde, and the amount of all non-enzymatic antioxidants named as total antioxidative capacity. Both methods are presented using young radish (Raphanus sativus) seedlings after treatment with extract from the invasive plant species Japanese knotweed (Fallopia japonica).Deciphering the molecular mechanisms underlying the regulation of the ATG4 protease is essential to understand the regulation of ATG8 lipidation, a key step in the biogenesis of the autophagosome and hence in autophagy progression. Here, we describe two complementary approaches to monitor ATG4 proteolytic activity in the model green alga Chlamydomonas reinhardtii an in vitro assay using recombinant ATG4 and recombinant ATG8 as substrate, and a cell-free assay using soluble total protein extract from Chlamydomonas and recombinant Chlamydomonas ATG8 as substrate. Both assays are followed by non-reducing SDS-PAGE and immuno-blot analysis. Given the high evolutionary conservation of the ATG8 maturation process, these assays have also been validated to monitor ATG4 activity in yeast using Chlamydomonas ATG8 as substrate.In plants, the hypersensitive response (HR) is a programmed cell death modality that occurs upon recognition of harmful non-self. It occurs at the site of pathogen infection, thus preventing pathogens to live off plant tissue and proliferate. Shedding light on the molecular constituents underlying this process requires robust and quantitative methods that can determine whether plants lacking functional genes are defective in HR execution compared to wild-type controls. In this chapter, we provide two quantitative protocols in which we measure cell death from Arabidopsis thaliana leaves infected with avirulent HR-causing bacterial strains. Firstly, we use trypan blue staining to quantify the stained area of leaves upon bacterial infection using a personalized macro in the Image J (Fiji) software. Alternately, we incorporate an electrolyte leakage protocol in order to measure HR caused by different avirulent bacterial strains at different bacterial titers. We encourage users to perform a combination of both methods when assessing HR in different plant genotypes.Ferroptosis is an oxidative iron-dependent cell death that was recently described in vertebrates, invertebrates, fungi, plants, and bacteria. In plants, ferroptosis has been reported in response to heat shock in roots of 6-day-old Arabidopsis thaliana seedlings. Generally, all biochemical and morphological ferroptosis hallmarks are conserved between animals and plants. Here, we describe a protocol to induce and quantify ferroptosis in plants based on the analysis of dead cells with a Sytox Green stain. Furthermore, heat shock induced cell death is prevented by using specific ferroptosis inhibitors.Cell death in plants plays a major role during development as well as in response to certain biotic and abiotic stresses. For example, plant cell death can be triggered in a tightly regulated way during the hypersensitive response (HR) in defense against pathogens or be elicited by pathogenic toxin deployment. Monitoring cell death and its impact on plant health can aid in the quantification of plant disease symptoms and help to identify the underlying molecular pathways. Here, we describe our current protocol for monitoring plant cell death via ion leakage and Pulse-Amplitude-Modulation (PAM) fluorometry. We further provide a detailed protocol for the sample preparation, the measurement, and the data evaluation and discuss the complementary nature of ion leakage and PAM fluorometry as well as the potential of PAM fluorometry for high-throughput screenings.Substrate sequence specificity is a fundamental characteristic of proteolytic enzymes. Hundreds of proteases are encoded in plant genomes, but the vast majority of them have not been characterized and their distinct specificity remains largely unknown. Here we present our current protocol for profiling sequence specificity of plant proteases using Proteomic Identification of Cleavage Sites (PICS). This simple, cost-effective protocol is suited for detailed, time-resolved specificity profiling of purified or enriched proteases. The isolated active protease or fraction with enriched protease activity together with a suitable control are incubated with split aliquots of proteome-derived peptide libraries, followed by identification of specifically cleaved peptides using quantitative mass spectrometry. Detailed specificity profiles are obtained by alignment of many individual cleavage sites. The chapter covers preparation of complementary peptide libraries from heterologous sources, the cleavage assay itself, as well as mass spectrometry data analysis.Protein N-termini provide unique and distinguishing information on proteolytically processed or N-terminally modified proteoforms. Also splicing, use of alternative translation initiation sites, and a variety of co- and post-translational N-terminal modifications generate distinct proteoforms that are unambiguously identified by their N-termini. However, N-terminal peptides are only a small fraction among all peptides generated in a shotgun proteome digest, are often of low stoichiometric abundance, and therefore require enrichment. Various protocols for enrichment of N-terminal peptides have been established and successfully been used for protease substrate discovery and profiling of N-terminal modification, but often require large amounts of proteome. We have recently established the High-efficiency Undecanal-based N-Termini EnRichment (HUNTER) as a fast and sensitive method to enable enrichment of protein N-termini from limited sample sources with as little as a few microgram proteome. Here we present our current HUNTER protocol for sensitive plant N-terminome profiling, including sample preparation, enrichment of N-terminal peptides, and mass spectrometry data analysis.Metacaspases are cysteine proteases that are present in plants, protists, fungi, and bacteria. Previously, we found that physical damage, e.g., pinching with forceps or grinding on liquid nitrogen of plant tissues, activates Arabidopsis thaliana METACASPASE 4 (AtMCA4). AtMCA4 subsequently cleaves PROPEP1, the precursor pro-protein of the plant elicitor peptide 1 (Pep1). Here, we describe a protein extraction method to detect activation of AtMCA4 by Western blot with antibodies against endogenous AtMCA4 and a PROPEP1-YFP fusion protein. It is important to (1) keep plant tissues at all times on liquid nitrogen prior to protein extraction, and (2) denature the protein lysate as fast as possible, as metacaspase activation ensues quasi immediately because of tissue damage inherent to protein extraction. In theory, this method can serve to detect damage-induced alterations of any protein-of-interest in any organism for which antibodies or fusion proteins are available, and hence, will greatly aid the study of rapid damage-activated proteolysis in the future.Activity of proteases in tissues can be influenced by various intrinsic and extrinsic factors. One of the activities that is regularly monitored in organisms ranging from prokaryotes to metazoans is the -aspase-like activity activity of proteases, which cleave their substrates after the negatively charged amino acid residues, especially the aspartic acid. This activity is also known as the caspase-like activity, since the caspases, metazoan cysteine proteases, are one of the best characterized proteases with Asp-directed activities. Plants do not contain caspases; however, various plant proteases have been shown to exhibit caspase-like activity including saspases, phytaspases, and legumains (VPEs). The activity of these proteases can change in plants in response to stress. Here we present a simple method for monitoring of the caspase-like protease activity in roots, which have been treated with allelopathic extracts, using a set of commercially available caspase substrates. We show that activity towards some, but not all, caspase substrates is upregulated in treated but not control samples. The protocol can be used also for other plant tissues as well as for other stressors.Reactivity-based chemical proteomics is a powerful technology based on the use of tagged chemicals that covalently react with surface-exposed residues on proteins in native proteomes. Reactivity profiling involves the purification, identification, and quantification of labeled peptides by LC-MS/MS. Here, we have detailed a protocol for reactivity profiling of Cys residues using iodoacetamide probes, displaying >1000 reactive Cys residues in the proteome of phytopathogen Pseudomonas syringae pv. tomato DC3000 (PtoDC3000). Comparative reactivity profiling of PtoDC3000 treated with or without hydrogen peroxide (H2O2) identified ~200 H2O2-sensitive Cys residues in antioxidant enzymes, metabolic enzymes, and transcription regulators. Interestingly, half of these H2O2-sensitive Cys residues are more reactive in response to H2O2 and several proteins have multiple Cys residues with opposite reactivities in response to H2O2 exposure.Activity-based protein profiling (ABPP) is a powerful tool in biological chemistry to monitor protein activity using chemical probes that bind covalently and irreversible to active site of enzymes such as proteases. To date, there are three different ways to experimentally use ABPP comparative, competitive, and convolution ABPP. Here we use and describe the convolution ABPP approach, a method used to detect changes in protease inhibitor abundance in different proteomes. We have applied this method to monitor the activity of Lolium perenne apoplastic cysteine proteases during the interaction with the fungal endophyte Epichloë festucae. We describe the method to isolate apoplastic fluids from infected and uninfected L. perenne ryegrass leaves and the protocol to perform a convolution ABPP experiment. Furthermore, we report how to quantify and analyze fluorescent gels obtained from the ABPP labeling.The physiological relevance of site-specific precursor processing for the biogenesis of peptide hormones and growth factors can be demonstrated in genetic complementation experiments, in which a gain of function is observed for the cleavable wild-type precursor, but not for a non-cleavable precursor mutant. Similarly, cleavable and non-cleavable synthetic peptides can be used in bioassays to test whether processing is required for bioactivity. In genetic complementation experiments, site-directed mutagenesis has to be used to mask a processing site against proteolysis. Peptide-based bioassays have the distinctive advantage that peptides can be protected against proteolytic cleavage by backbone modifications, i.e., without changing the amino acid sequence. Peptide backbone modifications have been employed to increase the metabolic stability of peptide drugs, and in basic research, to investigate whether processing at a certain site is required for precursor maturation and formation of the bioactive peptide. For this approach, it is important to show that modification of the peptide backbone has the desired effect and does indeed protect the respective peptide bond against proteolysis.