An inkjet printed membrane is presented as a colorimetric sensor for oxygen for use in smart packaging, in order to quickly inform the consumer about possible degradation reactions in modified atmosphere products (MAP). The colorimetric sensor is based on the redox dye, toluidine blue (TB), a sacrificial electron donor, glycerol, and, hydroxypropyl methylcellulose, as the hydrophilic polymeric matrix. The UVC-wavelength activated TB is photoreduced by SnO2 nanoparticle ink. https://www.selleckchem.com/products/nor-noha-dihydrochloride.html This colorimetric oxygen indicator stays colourless upon exposure in nitrogen atmosphere to 7 min UVC light (6 W·cm-2). The photoreduced TB to leuco TB recovers its original colour upon exposure to oxygen for 55 min under ambient conditions (∼21 °C, ∼55%RH, 21% O2). The characteristics of the sensor have been evaluated, including its functionality through the colorimetric response to different oxygen concentrations as well as the influence of experimental variables such as humidity and temperature using a digital camera as the detector. The results obtained show that (1) the colorimetric sensor remains stable in the absence of oxygen; (2) relative humidity greater than 60% significantly affects the reoxidation process; and (3) the temperature has a significant influence on the colour recovery, although the stability increases considerably when the sensor is kept refrigerated at 4 °C. A real application to packaged ham was performed, demonstrating that the printed colorimetric sensor is stable for at least 48 hours once activated and when the container deteriorates upon the entrance of oxygen, the sensor returns to its original blue colour, demonstrating its utility as a UVC-activated colorimetric oxygen sensor.Low glucose levels during exercise may lead to hypoglycemia, which can have grave consequences in diabetic athletes. Mobile colorimetric wearable biosensors that measure glucose levels in sweat are ideal for self-monitoring as they can utilize the camera in smartphones for signal reading. However, colorimetric biosensors proposed thus far have higher limit of detection (LOD) than electrochemical devices, which makes them unsuitable for detecting hypoglycemia. In this manuscript we describe colorimetric wearable biosensors that detect glucose in sweat with an LOD of 0.01 mM and a dynamic range up to 0.15 mM. The devices are made of filter paper and incorporate a sweat volume sensor and a color chart for signal correction. The biosensors do not suffer from interferences originated by delayed sample readings, or differences in bending angle and sample pH. When applied to volunteers performing an exercise routine, sweat glucose levels corrected with sweat volume measurements correlated well with blood glucose measurements performed with a commercial device. The devices are lightweight and easily disposable. These features, along with the smartphone-based colorimetric readout, makes them promising as "over-the-counter" tests for measuring glucose levels non-invasively during exercise.We have designed and developed non-fluorescent, cell-permeable photoactivatable fluorophores, photoactivatable SPiDERs (paSPiDERs), which exhibit fluorescence activation upon light irradiation, accompanied by the generation of a quinone methide intermediate that binds covalently to intracellular proteins. The fluorescence signal is durable for 24 hours, resistant to fixation and compatible with immunostaining, and selective cell labeling can be achieved at single-cell resolution.Herein, a label-free electrochemical immunosensor based on differential pulse voltammetry (DPV) and amperometric i-t curve (i-t) dual-mode analysis is proposed for early quantitative detection of procalcitonin (PCT). Due to the advantages of high chemical stability and biocompatibility, graphite carbon nitride (g-C3N4) was adopted as a high-capacity sensing interface to carry signal indicators. As an effective indicator of chronoamperometry, nickel cobalt sulfide (NiCo2S4) was uniformly dispersed on the surface of g-C3N4 through in-situ hydrothermal synthesis, which not only promotes the activation of bimetallic activity, but also effectively prevents the aggregation of NiCo2S4. At the same time, in order to establish a dual-mode analysis platform to improve accuracy and sensitivity, highly conductive carbon nanotubes (CNTs) were hybridized with composite materials to load Ag nanoparticles (Ag NPs), which have excellent oxidizing properties and are used as indicators of DPV. On account of this advanced sensing strategy, a wide linear response (DPV 0.05 ng mL-1-50 ng mL-1 and i-t 1.00 pg mL-1-10.00 ng mL-1) and a low detection limit (DPV 16.70 pg mL-1 and i-t 0.33 pg mL-1) are demonstrated. The immunosensor synthesized by this method has good stability and sensitivity, which could be applied in clinical diagnosis and treatment.One of the best strategies to circumvent drug resistance is the employment of nanocarriers. For the current study, we have employed a nanoemulsion formulation of paclitaxel (PTX) to bypass drug resistance in the MDA-MB-231 cell line and impedance sensing biosensors to determine the exact time that PTX-NE induced apoptosis. Our MTT results demonstrated that PTX treatment could not reduce MDA-MB-231 cell viability to IC50 even after three days. However, the employment of the reagent TPGS (inhibitor of drug resistance) combined with paclitaxel could partially obviate PTX resistance. Next, the nanoemulsion form of PTX (PTX-NE) was fabricated employing the essential oil of the Satureja khuzestanica plant and was characterized using DLS and TEM methods. Our data showed that after 72 hours, PTX-NE at 250 nM concentration could induce a 50% reduction in cell viability. Moreover, annexin/PI and cell cycle analysis confirmed the apoptotic effect of PTX-NE on cancer cells. Lastly, we measured the impedance of MDA-MB-231 cells treated with the free and nanoemulsion forms of PTX. A significant decrease in the mean impedance of PTX-NE treated cells could be observed after 40 hours. To conclude, we have demonstrated here that PTX-NE could circumvent resistance and induce apoptosis in PTX-resistant breast cancer cells, which could be inferred from their impedance measurement.The structural, electronic and magnetic properties of large area chemical vapor deposited monolayer MoS2 rely significantly on the presence of grain boundaries (GBs) and defects. In this study, first-principles calculations were performed to investigate the electronic and magnetic properties of transition metal doped MoS2 GBs. The experimentally observed 60° tilt GBs were demonstrated with four different atomic configurations and the nonmagnetic 48ud GB has the lowest formation energy among the considered models. Further calculations of 48ud GBs doped with TMs, such as V, Cr, Mn, Fe, Co and Ni, indicate that dopants can significantly lower the formation energies of the doped GBs compared to the perfect monolayer MoS2 by occupying the GB region instead of within the grains. Magnetism can be achieved in doped GB systems by careful defect engineering. CoMo, MnMo and Niint in 48ud GBs are predicted to be magnetic and simultaneously energetically favorable. The electron coupling between the doped TM and surrounding GB atoms is expected to induce magnetism and high electron mobilities into the systems. This study may pave the way for optimal design of MoS2-based electronic and spintronic devices.This review highlights the recent developments in the field of metalloporphyrins as optical probes for biologically relevant molecules, such as nitric oxide (NO) and hydrogen sulfide (H2S), and as catalysts for the preparation of sustainable polymers such as polyesters, by the ring-opening polymerization (ROP) of cyclic esters and the ring-opening co-polymerization (ROCOP) of epoxides and anhydrides, and polycarbonates by the chemical fixation of carbon dioxide (CO2). The great potential of porphyrins is mainly due to the possibility of making various synthetic modifications to the porphyrin ring, such as modifying the coordinated metal, peripheral substituents, or even the molecular skeleton. Due to the strict structure-property relationships, one can use porphyrinoids in several different applications such as, for instance, activation of molecular oxygen or catalysis of photosynthetic processes. These possibilities broaden the application of porphyrins in several different fields of research, further mimicking what nature does. In this context, here, we want to provide evidence for the great flexibility of metalloporphyrins by presenting an overview of results obtained by us and others in the research fields we are currently involved in. More specifically, we report a survey of our most significant achievements regarding their use as optical probes in the context of the results reported in the literature from other research groups, and of the use of porphyrin metal(iii) complexes as catalysts for sustainable polymerization processes. As for the optical probe section, in addition to the metalloporphyrins synthesized ad hoc in the laboratory, the present work also covers the natural proteins containing a porphyrin core.Two water/alcohol soluble conjugated polymers (WSCPs), based on naphthalenediimide and amino-functionalized 3,4-(propylenedioxy)thiophene, were synthesized via direct arylation polycondensation (DArP). The polymers worked well as electron transporting layers (ETLs) for fullerene-based and fullerene-free organic solar cells (OSCs), presenting an enhancement by above 40% compared to the control devices, respectively. The doping properties and high electron mobilities of these WSCPs endow them with high performance. The research study developed an effective method to synthesize ETLs for highly efficient OSCs, which was rarely reported.Exosomes are cell-derived membrane-enclosed biological nanoparticles that carry lots of parental molecular information, and are recognized as an ideal biomarker for non-invasive diagnosis. However, due to the low abundance of exosomes in plasma samples and the interferences from complex biological matrices, the sensitive and direct detection of exosomes still remains a challenge. Here, by combining the direct magnetic isolation with in situ fluorescence imaging, we developed a Single Microbead-based Fluorescent Aptasensor (SMFA) for specific enrichment and sensitive quantification of exosomes from plasma. In the SMFA, a single aptamer-modified microbead (MB) served as the reaction carrier so that the specific exosomes inserted with a fluorescent anchor will be highly enriched on the single MB. By in situ fluorescence imaging to monitor the fluorescence signals on the single MB, sensitive detection of exosomes can be realized without the requirement of any signal amplification routes, and as low as 4.9 × 104 particles per μL of exosomes could be simply detected. More importantly, the SMFA could be applied for direct detection of the exosomes from small amounts of clinical plasma samples without prior purification procedures, indicating its great potential applications in clinical diagnostics.Selectivity between Am3+ and Cm3+ was investigated after their aqueous complexation with three structurally tailored hydrophilic bis-(1,2,4-triazin-3-yl) ligands followed by their extraction with N,N,N'N'-tetraoctyl diglycolamide (TODGA) dissolved in an ionic liquid (C4mim·Tf2N). The three hydrophilic ligands used were SO3PhBTP, SO3PhBTBP, and SO3PhBTPhen. It was evident from the solvent extraction studies that SO3PhBTP formed a stronger complex with Cm3+ than with Am3+, but SO3PhBTPhen showed better complexation ability for Am3+ than for Cm3+, and SO3PhBTBP showed no selectivity for the two actinide ions. DFT calculations indicated that the coordinating 'N' atoms in BTP were more co-planar in the complex and this co-planarity was higher in the Cm3+ complex as compared to that in Am3+. In the case of BTBP and BTPhen ligands, on the other hand, the co-planarity was more pronounced in the Am3+ complexes. Mayer's bond order calculations of M-N bonds in the complexes also indicated a reversal of the complexation ability of the BTP and BTPhen ligands for Am3+ and Cm3+.