This work describes a novel application of atmospheric pressure gas chromatography time-of-flight mass spectrometry (APGC-TOF-MS) combined with solid-phase microextraction (SPME) for the simultaneous analysis of hydrocarbons and naphthenic acids (NAs) species in raw and ozone-treated oil sands process water (OSPW). SPME method using polydimethylsiloxane (PDMS)-coated fibers was validated using gas chromatography with flame ionization detector (GC-FID) to ensure the SPME extractions were operated appropriately. The ionization pathways of the hydrocarbon species in OSPW in the APGC source were verified by analyzing a mixture of eight polyaromatic hydrocarbons which were ionized primarily via charge transfer to produce [M+] while NAs in OSPW were found to be ionized through protonation to generate [MH+] in the wet APGC source. SPME/APGC-TOF-MS analysis demonstrated a different composition profile in OSPW #1, with 74.5% of hydrocarbon species, 23.4% of O2-NAs, and 2.1% of the oxidized NA species at extraction pH 2.0 compared with that obtained by UPLC-TOF-MS analysis (36.9% of O2-NAs, 26.8% of O3-NAs, 24.9% of O4-NAs, 9.1% of O5-NAs, 2.3% of O6-NAs). Moreover, the peak areas of the total NAs and the total peak areas of NAs + hydrocarbons measured by SPME/APGC-TOF-MS correlated excellently with the total NA concentration determined by UPLC-TOF-MS (R2 = 0.90) and the concentrations of the total acid-extractable organics determined by SPME/GC-FID (R2 = 0.98), respectively. APGC-TOF-MS integrated with the SPME techniques could extend the range of target compounds and be a promising alternative to evaluate and characterize NAs and hydrocarbon in different water types.Herein, degradation of ofloxacin (OFX) by pulsed discharge plasma (PDP) coupled with multi-catalysis using graphene-Fe3O4 nanocomposites was inspected. The graphene-Fe3O4 nanocomposites were prepared by hydrothermal synthesis, and their morphology, specific surface area, chemical bond structure and magnetic property were characterized systematically. Compared with sole Fe3O4, the specific surface area of graphene-Fe3O4 nanocomposites increased from 26.34 m2/g to 125.04 m2/g. The prepared graphene-Fe3O4 nanocomposites had higher paramagnetism and the magnetic strength reached 66.05 emu/g, which was prone to separate from solution. Graphene-Fe3O4 nanocomposites could further accelerate OFX degradation compared to sole Fe3O4. When graphene content was 18 wt%, graphene-Fe3O4 nanocomposites exhibited the highest catalytic activity, and the removal efficiency of OFX enhanced from 65.0% (PDP alone) to 99.9%. 0.23 g/L dosage and acid solution were beneficial for OFX degradation. Higher stability of graphene-Fe3O4 nanocomposites could be maintained although four times use. Graphene-Fe3O4 nanocomposites could catalyze H2O2 and O3 to produce more ·OH. The degradation products of OFX were identified by liquid chromatography mass spectrometry (LC-MS) and ion chromatography (IC). According to the identified products and discrete Fourier transform (DFT), the degradation pathway was inferred. Further toxicity assessment of products manifested that the toxicity of oral rat 50% lethal dose (LD50) and the developmental toxicity of OFX were reduced.Alkaline environments are abundant globally and cause damage to most organisms, while some microalgae can grow well and accumulate lipids under those conditions. Here the mechanisms of alkali resistance and lipid accumulation in the alkaliphilic microalgae Chlorella sp. BLD were explored using physiological-biochemical and transcriptome analysis. When cultivated at alkaline pH, Chlorella sp. BLD exhibited good alkali-resistance ability and increased biomass (0.97 g L-1). The biochemical composition of Chlorella sp. BLD changed significantly (lipid content increased 39% and protein content decreased 19.5%) compared with pH 7.5. Through transcriptome analysis, we found that pathways related to carbon metabolism such as photosynthesis, glycolysis, and the TCA cycle were significantly regulated under alkaline conditions. Genes that encoding the key enzyme in carbon-related metabolism such as Rubisco, AMY, PK, ME, CS, ACAT, KAS, and DGAT were identified. Transcriptional regulation of these genes results in carbon flow switching from starch and protein to cell wall metabolism, organic acid synthetic and lipid accumulation in response to alkaline conditions. These results reveal the alkali resistance mechanism of Chlorella sp. BLD and provide a theoretical basis for microalgae oil production under alkaline conditions.Due to human activity and global climate change, the Yellow River Delta, the youngest delta wetland in China, is suffering serious degradation. The study of hydrological connection provides new perspectives and technical support for the protection and restoration of delta wetlands. To quantify the interaction between the hydrological connection and the root-soil complex, the current study took dye-tracing experiments to examine the small-scale hydrological connectivity in soil where Phramites australis grew. The dye coverage was selected as the indicator of hydrological connectivity after preliminary analysis in this study. The main results were that (1) the strength of hydrological connectivity was negatively related to the microaggregates content, but had little to do with other soil physical properties; (2) there was a notable positive correlation between the indexes of thick root (D > 5 mm) and the dye coverage hydrological connectivity, while root biomass had little effect on hydrological connectivity; and (3) the influence of the microaggregate content dominated in the combined effect of the total surface area of the root (D > 5 mm) and the microaggregate content on hydrological connectivity in each soil layer.XAD-based passive air samplers (PAS) were used to evaluate organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and some current use pesticides (chlorotalonil, trifluralin and dichlofluanid) in the atmosphere of Argentinian Patagonia. The PAS were deployed for 12 months during three consecutive years along a longitudinal (Rio Negro watershed) and a latitudinal (Patagonian coast) transect. Endosulfan, trifluralin and DDT-related substances were the most prevalent pesticides in the Rio Negro watershed, an intensive agricultural basin, consistent with ongoing use of endosulfan at the time of sampling. Concentrations of industrial contaminants were low (mean 25 pg/m3 and 1.9 pg/m3 for Σ38 PCBs, and Σ5PBDEs, respectively) and similar among sites. However, along the Patagonian coast, air concentrations of total contaminants were highly variable (14-400 pg/m3) with highest values recorded at Bahia Blanca, an important industrial area that is also downwind of the most intensively agriculturally used area of Argentina. Contaminant levels decreased toward the south, with the exception of the southernmost sampling site (Rio Gallegos) where a slight increase of total pollutant levels was observed, mainly due to the lower chlorinated PCB congeners. Interannual variability was small, although the last year tended to have slightly higher levels for different contaminant groups at most sampling sites. This large-scale spatial atmospheric monitoring of POPs and some CUPs in the South of Argentina highlights the important and continuing role of rural and urban areas as emission sources of these chemicals.Cell-to-cell communication regulates microalgae production via signaling molecules (SMs), but few microalgal SM species are known. Here, we document two new microalgae SMs, benzoic acid (BA) and salicylic acid (SA). Initially, crude SMs were extracted from a microalgae culture in which microalgae grew on heterotrophic-enriched phosphorus nutrition. The extracted SMs enhanced Chlorella growth by ∼72%, promoted nutrient uptake, and up-regulated the mitogen-activated protein-kinase signaling cascade. Fourier transform infrared and nuclear magnetic resonance analyses identified the putative SMs was aromatic carboxylic acids. BA and SA were identified using high-resolution mass spectrometry. BA and SA addition increased cell growth by ∼75% and ∼25%; and improved ATP production by ∼35% and ∼20%. Transcriptomic analysis showed that BA and SA were biosynthesized via CoA-dependent, non-oxidative pathway. The SMs upregulated TCA-cycle enzymes, which promoted carbon assimilation and activated DNA-replicating enzyme, so that accelerated cell division. This study identified two new SMs for microalgae cell communication and provides means to identify other SMs.Carbamazepine (CBZ), an anticonvulsant and mood stabilizer, is ubiquitous distributed in aquatic environment. Though the toxicity and endocrine disrupting effect of CBZ on non-target organisms have been studied, its lipotoxity are scarcely known. To assess the lipotoxicity of CBZ, 2-month-old Chinese rare minnow were exposed to 0, 1, 10, and 100 μg/L CBZ for 90 d. https://www.selleckchem.com/products/plumbagin.html Obvious dyslipidemia was observed after 30 d and 90 d exposure, whereas overt hyperlipidemia was observed in males at 100 μg/L treatments. Severe lipid droplet accumulation in livers was observed at 10 and 100 μg/L treatments for 30 d and in females, whereas those was observed at all treatments in males. In addition, serious mitochondria damage was observed in males at 100 μg/L treatments. After 90 d exposure, the enzyme activities of FAS and ACCα were significantly increased at 10 and 100 μg/L treatments, whereas HMGCR were markedly increased at 100 μg/L treatments (p less then 0.05). However, ACCβ were markedly decreased in females at 10 and 100 μg/L treatments and in males at all treatments (p less then 0.05). The transcription levels of fasn, accα, hmgcrα, fdft1, idi1, plin1, plin2, caveolin1, and caveolin2 were significantly increased at 100 μg/L treatments (p less then 0.05). Moreover, the body weight was obviously increased at 10 and 100 μg/L treatments in males (p less then 0.05). Our results confirmed that environmental relevant concentrations CBZ induced lipid metabolism disorder and mitochondria damage of Chinese rare minnow in a gender-specific pattern, which provided a new insight into the lipotoxicity mechanism of CBZ.In order to investigate the influence of differently sized particle fractions on the fate of ionic chemicals in water-sediment systems, we performed simulation studies following OECD guideline 308. We used 14C-labelled anionic (4-n-dodecylbenzenesulfonic acid sodium salt, '14C-DS-'), cationic (4-n-dodecylbenzyltrimethyl ammonium chloride, '14C-DA+') and non-ionic (4-n-dodecylphenol, '14C-DP') organic chemicals. The sediment was subjected to particle size fractionation. For each particle fraction and test compound, water-sediment systems were prepared and incubated for 14 days. Across all particle fractions, higher amounts of applied radioactivity (AR) of 14C-DS- (in sand 60.1%, in silt 45.1%, in clay 57.0%) and of 14C-DP (sand 31.8%, silt 24.4%, clay 29.2%) were mineralised compared to 14C-DA+ (sand 5.1% AR, silt 3.5% AR, clay 2.4% AR). The highest bioavailability was observed for 14C-DS- followed by 14C-DP and 14C-DA+ across all particle fractions. Formation of non-extractable residues (NER) of 14C-DS- did not substantially differ between the particle fractions, whereas NER formation of 14C-DA+ was higher in the clay fraction (24.


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-09-10 (火) 22:09:09