Glyoxalase I (Gly I) is the first enzyme in the glutathionine-dependent glyoxalase pathway for detoxification of methylglyoxal (MG) under stress conditions. https://www.selleckchem.com/products/abt-199.html Transgenic tomato 'Money Maker' plants overexpressing tomato SlGlyI gene (tomato unigene accession SGN-U582631/Solyc09g082120.3.1) were generated and homozygous lines were obtained after four generations of self-pollination. In this study, SlGlyI-overepxressing line (GlyI), wild type (WT, negative control) and plants transformed with empty vector (ECtr, positive control), were subjected to Al-treatment by growing in Magnavaca's nutrient solution (pH 4.5) supplemented with 20 µM Al3+ ion activity. After 30 days of treatments, the fresh and dry weight of shoots and roots of plants from Al-treated conditions decreased significantly compared to the non-treated conditions for all the three lines. When compared across the three lines, root fresh and dry weight of GlyI was significant higher than WT and ECtr, whereas there was no difference in shoot tissues. Therotein translation. A protein-protein association network was constructed to aid the selection of proteins in the same pathway but differentially regulated in GlyI or ECtr lines. Proteomics data are available via ProteomeXchange with identifiers PXD009456 under project title '25Dec2017_Suping_XSexp2_ITAG3.2' for SlGlyI-overexpressing tomato plants and PXD009848 under project title '25Dec2017_Suping_XSexp3_ITAG3.2' for positive control ECtr line transformed with empty vector.The aluminum (Al) cation Al3+ in acidic soil shows severe rhizotoxicity that inhibits plant growth and development. Most woody plants adapted to acidic soils have evolved specific strategies against Al3+ toxicity, but the underlying mechanism remains elusive. The four-carbon amino acid gamma-aminobutyric acid (GABA) has been well studied in mammals as an inhibitory neurotransmitter; GABA also controls many physiological responses during environmental or biotic stress. The woody plant hybrid Liriodendron (L. chinense × tulipifera) is widely cultivated in China as a horticultural tree and provides high-quality timber; studying its adaptation to high Al stress is important for harnessing its ecological and economic potential. Here, we performed quantitative iTRAQ (isobaric tags for relative and absolute quantification) to study how protein expression is altered in hybrid Liriodendron leaves subjected to Al stress. Hybrid Liriodendron shows differential accumulation of several proteins related to cell wall biosynthesis, sugar and proline metabolism, antioxidant activity, cell autophagy, protein ubiquitination degradation, and anion transport in response to Al damage. We observed that Al stress upregulated glutamate decarboxylase (GAD) and its activity, leading to increased GABA biosynthesis. Additional GABA synergistically increased Al-induced antioxidant enzyme activity to efficiently scavenge ROS, enhanced proline biosynthesis, and upregulated the expression of MATE1/2, which subsequently promoted the efflux of citrate for chelation of Al3+. We also showed similar effects of GABA on enhanced Al3+ tolerance in Arabidopsis. Thus, our findings suggest a function of GABA signaling in enhancing hybrid Liriodendron tolerance to Al stress through promoting organic acid transport and sustaining the cellular redox and osmotic balance.Most molecularly characterized plant resistance genes (R genes) belong to the nucleotide-binding-site-leucine-rich-repeat (NLR) receptor family and are prone to duplication and transposition with high sequence diversity. In this family, the Vat gene in melon is one of the few R genes known for conferring resistance to insect, i.e., Aphis gossypii, but it has been misassembled and/or mispredicted in the whole genomes of Cucurbits. We examined 14 genomic regions (about 400 kb) derived from long-read assemblies spanning Vat-related genes in Cucumis melo, Cucumis sativus, Citrullus lanatus, Benincasa hispida, Cucurbita argyrosperma, and Momordica charantia. We built the phylogeny of those genes. Investigating the paleohistory of the Vat gene cluster, we revealed a step by step process beginning from a common ancestry in cucurbits older than 50 my. We highlighted Vat exclusively in the Cucumis genera, which diverged about 20 my ago. We then focused on melon, evaluating a minimum duplication rate of Vat in 80 wild and cultivated melon lines using generalist primers; our results suggested that duplication started before melon domestication. The phylogeny of 44 Vat-CDS obtained from 21 melon lines revealed gain and loss of leucine-rich-repeat domains along diversification. Altogether, we revealed the high putative recognition scale offered in melon based on a combination of SNPs, number of leucine-rich-repeat domains within each homolog and number of homologs within each cluster that might jointly confer resistance to a large pest and pathogen spectrum. Based on our findings, we propose possible avenues for breeding programs.The present work reports the discovery and the complete characterisation of an ancient cultivated rose variety found growing in a private garden in the southwest of the Principality of Asturias (northern Spain). The variety is here given the name Narcea. The majority of roses currently cultivated belong to the so-called group of 'Modern Roses', all of which were obtained after 1867 via artificial crosses and improvement programmes. All are destined for ornamental use. Until the 19th century, the great majority of the many ancient cultivated roses in Europe were used in perfumery and cosmetics, or had medicinal uses. Rosa damascena and Rosa centifollia are still grown and used by the French and Bulgarian perfume industries. The Asturian Massif of the Cantabrian Mountain Range provides a natural habitat for some 75% of the wild members of the genus Rosa, but until now there was no evidence that this area was home to ancient cultivated roses. A complete botanical description is here provided for a discovered ancient rose. It is also characterised according to a series of sequence tagged microsatellite sites, and its agronomic features are reported. In addition, a histological description (optical and scanning electronic microscope studies) of the petals is offered, along with an analysis of the volatile compounds present in these organs as determined by solid phase microextraction and gas chromatography-mass spectroscopy. The results reveal the uniqueness of this ancient type of rose and suggest it may be of interest to the perfume industry.Epidemiological studies of the COVID-19 patients have suggested the male bias in outcomes of lung illness. To experimentally demonstrate the epidemiological results, we performed animal studies to infect male and female Syrian hamsters with SARS-CoV-2. Remarkably, high viral titer in nasal washings was detectable in male hamsters who presented symptoms of weight loss, weakness, piloerection, hunched back and abdominal respiration, as well as severe pneumonia, pulmonary edema, consolidation, and fibrosis. In contrast with the males, the female hamsters showed much lower shedding viral titers, moderate symptoms, and relatively mild lung pathogenesis. The obvious differences in the susceptibility to SARS-CoV-2 and severity of lung pathogenesis between male and female hamsters provided experimental evidence that SARS-CoV-2 infection and the severity of COVID-19 are associated with gender.Olive (Olea europaea L.) is internationally renowned for its high-end product, extra virgin olive oil. An incomplete genome of O. europaea was previously obtained using shotgun sequencing in 2016. To further explore the genetic and breeding utilization of olive, an updated draft genome of olive was obtained using Oxford Nanopore third-generation sequencing and Hi-C technology. Seven different assembly strategies were used to assemble the final genome of 1.30 Gb, with contig and scaffold N50 sizes of 4.67 Mb and 42.60 Mb, respectively. This greatly increased the quality of the olive genome. We assembled 1.1 Gb of sequences of the total olive genome to 23 pseudochromosomes by Hi-C, and 53,518 protein-coding genes were predicted in the current assembly. Comparative genomics analyses, including gene family expansion and contraction, whole-genome replication, phylogenetic analysis, and positive selection, were performed. Based on the obtained high-quality olive genome, a total of nine gene families with 202 genes were identified in the oleuropein biosynthesis pathway, which is twice the number of genes identified from the previous data. This new accession of the olive genome is of sufficient quality for genome-wide studies on gene function in olive and has provided a foundation for the molecular breeding of olive species.Grafting is a highly useful technique, and its success largely depends on graft union formation. In this study, we found that root-specific expression of the auxin biosynthetic gene iaaM in tobacco, when used as rootstock, resulted in more rapid callus formation and faster graft healing. However, overexpression of the auxin-inactivating iaaL gene in rootstocks delayed graft healing. We observed increased endogenous auxin levels and auxin-responsive DR5GUS expression in scions of WT/iaaM grafts compared with those found in WT/WT grafts, which suggested that auxin is transported upward from rootstock to scion tissues. A transcriptome analysis showed that auxin enhanced graft union formation through increases in the expression of genes involved in graft healing in both rootstock and scion tissues. We also observed that the ethylene biosynthetic gene ACS1 and the ethylene-responsive gene ERF5 were upregulated in both scions and rootstocks of the WT/iaaM grafts. Furthermore, exogenous applications of the ethylene precursor ACC to the junction of WT/WT grafts promoted graft union formation, whereas application of the ethylene biosynthesis inhibitor AVG delayed graft healing in WT/WT grafts, and the observed delay was less pronounced in the WT/iaaM grafts. These results demonstrated that elevated auxin levels in the iaaM rootstock in combination with the increased auxin levels in scions caused by upward transport/diffusion enhanced graft union formation and that ethylene was partially responsible for the effects of auxin on grafting. Our findings showed that grafting success can be enhanced by increasing the auxin levels in rootstocks using transgenic or gene-editing techniques.Both cuticle and membrane lipids play essential roles in quality maintenance and disease resistance in fresh fruits. Many reports have indicated the modification of alternative branch pathways in epicuticular wax mutants; however, the specific alterations concerning lipids have not been clarified thus far. Here, we conducted a comprehensive, time-resolved lipidomic, and transcriptomic analysis on the "Newhall" navel orange (WT) and its glossy mutant (MT) "Gannan No. 1". The results revealed severely suppressed wax formation accompanied by significantly elevated production of 36-carbon plastid lipids with increasing fruit maturation in MT. Transcriptomics analysis further identified a series of key functional enzymes and transcription factors putatively involved in the biosynthesis pathways of wax and membrane lipids. Moreover, the high accumulation of jasmonic acid (JA) in MT was possibly due to the need to maintain plastid lipid homeostasis, as the expression levels of two significantly upregulated lipases (CsDAD1 and CsDALL2) were positively correlated with plastid lipids and characterized to hydrolyze plastid lipids to increase the JA content.