Alterations in mineralome possibly reflect a reprogramming of the metabolism to adapt to changes in growth, morphology and ion accumulation resulting from effect of NaCl. High intraspecies morphological and physiological variability in responses of T. fragiferum accessions to salinity allow to describe them as ecotypes.Xanthomonas euvesicatoria pv. rosa strain Xer07 causes a leaf spot on a Rosa sp. and is closely related to X. euvesicatoria pv. euvesicatoria (Xee) and X. perforans (Xp), causal agents of bacterial spot of tomato. However, Xer07 is not pathogenic on tomato and elicits a hypersensitive reaction (HR). We compared the genomes of the three bacterial species to identify the factors that limit Xer07 on tomato. Comparison of pathogenicity associated factors including the type III secretion systems identified two genes, xopA and xer3856, in Xer07 that have lower sequence homology in tomato pathogens. xer3856 is a homolog of genes in X. citri (xac3856) and X. fuscans pv. aurantifolii, both of which have been reported to elicit HRs in tomato. When xer3856 was expressed in X. perforans and infiltrated in tomato leaflets, the transconjugant elicited an HR and significantly reduced bacterial populations compared to the wildtype X. perforans strain. When xer3856 was mutated in Xer07, the mutant strain still triggered an HR in tomato leaflets. The second gene identified codes for type III secreted effector XopA, which contains a harpin domain that is distinct from the xopA homologs in Xee and Xp. The Xer07-xopA, when expressed in X. perforans, did not elicit an HR in tomato leaflets, but significantly reduced bacterial populations. This indicates that xopA and xer3856 genes in combination with an additional factor(s) limit Xer07 in tomato.Salt stress has the most severe impact on plant growth and development, including seed germination. However, little is known about the mechanism of NR (nitrate reductase)-associated nitric oxide (NO) regulates salt tolerance during seed germination in rice. Herein, we shown that inhibition of seed germination by salt stress was significantly impaired by sodium nitroferricyanide (SNP), a NO donor. Then a triple mutant, nr1/nr2/nr3, was generated. Results shown that germination of triple mutants were delayed and were much more sensitive to salt stress than WT plant, which can be rescued by application of SNP. qPCR analysis revealed that expressions of abscisic acid (ABA) catabolism gene, OsABA8ox1, was suppressed in triple mutants under salt stress, resulting in an elevated ABA content. https://www.selleckchem.com/products/dynasore.html Similar to SNP, application of nitrate also rescued seed germination under salt stress, which, however, was blocked in the triple mutants. Further study revealed that a nitrate responsive transcript factor, OsNLP2, was induced by salt stress, which thus up-regulates the expression of OsNRs and NR activity, resulting in promoted salt tolerance during seed germination. In addition, nitrate-mediated salt tolerance was impaired in mutant of aba8ox1, a target gene for NLP2. Transient trans-activation assays further revealed NLP2 can significantly activate the expression of OsABA8ox1 and OsNR1, suggesting that NLP2 activates expression of ABA catabolism gene directly or indirectly via NR-associated NO. Taken together, our results demonstrate that NLP2-NR associated NO was involved in salt response by increasing ABA catabolism during seed germination and highlight the importance of NO for stress tolerance of plants.Several Mesoamerican cultures have used Inga jinicuil as traditional medicine for the treatment of gastrointestinal, inflammatory, and infectious issues. The aims of this contribution were to elucidate the phytochemical profile of the organic extracts from the bark and leaves of I. jinicuil and to assess the anti-inflammatory and antibacterial properties of these extracts. The preliminary chemical profile was determined by HPLC-PDA and GC-MS; the anti-inflammatory activity was evaluated with a mouse ear edema model, whereas the antibacterial activity was screened against several bacteria. The phytochemical profile of both organs (bark and leaves) of I. jinicuil led to the identification of 42 compounds, such as polyphenolic, flavonoids, triterpenes, prenol-type lipids, and aliphatic and non-aliphatic esters. This molecular diversity gave moderate anti-inflammatory activity (67.3 ± 2.0%, dichloromethane bark extract) and excellent antibacterial activity against Pseudomona aeruginosa and methicillin-resistant Sthaphylococcus aureus (MIC values of ˂3.12 and 50 µg/mL, respectively). These results contribute to the chemotaxonomic characterization and the rational use in traditional medicine of Inga jinicuil Schltdl & Cham. ex G. Don.Puccinia triticina Erikss. is a causative agent of wheat leaf rust spread worldwide. Wheat rust is a major disease on wheat in southern regions of Russia, which are leaders in grain production and have favorable conditions for pathogen development. In this paper we studied the effectiveness of 52 NILs of cv. Thatcher with Lr genes in field trials and 41 NILs-in the juvenile phase in a greenhouse during 2011-2020. We conclude that the lines with Lr9, Lr42 and Lr43+24 genes remained immune in the adult phase during ten years of research. Lines with Lr genes 19, 24, 29, 36, 37, 38, 43, 45, 47, 50 showed efficiency in field tests (1-5 R on the CIMMYT scale). No immune lines to Puccinia triticina were registered in the juvenile phase during 2011-2020. The line with the Lr9 gene remained immune up to 2020; Lr19 and Lr41-up to 2015; Lr42-up to 2018, and Lr50-up to 2019. In 2020, there was an increase of P. triticina isolates with virulence to Thatcher lines with Lr 9, 14a, 16, 19, 21, 28, 30, 33, 40, 45, W, 50. Additionally, we registered a change in infection types towards more susceptible in isogenic Lr gene lines 1, 2a, 12, 14b, 15, 18, 20, 23, 25, 28, 29, 32, 35, 36, 37, 38, 40, 44, 45 in the field. A sharp increase in the frequencies of virulent isolates was recorded in 2018-2020 due to unfavorable weather in the growing seasons. This indicates the ability of a dangerous pathogen to rapidly evolve in response to biotic and abiotic stresses. Therefore, annual monitoring of the reaction of isogenic lines, selected released varieties and the study of the virulence of the phytopathogen are important measures necessary to prevent and control leaf rust in grain-producing regions of the world.The goldenrod (Solidago) species are flowering plants that produce nectar and can be the sources of unifloral honeys. S. canadensis and S. gigantea are native to North America and invasive in several European countries, while S. virgaurea is native to Europe. The aim of this work was to determine and compare the antioxidant capacity of goldenrod honeys collected in three central European countries (Hungary, Poland, and Slovakia), from three locations within each country. The botanical origin of each honey sample was checked with melissopalynological analysis. Color intensity was determined using the Pfund scale. The antioxidant activity was determined with different spectrophotometric methods (DPPH, ABTS, and FRAP). The content of total polyphenols, flavonoids, and phenolic acids was quantified using spectrophotometric methods. The highest radical-scavenging activity was identified for Hungarian samples with all three antioxidant capacity assays. Medium antioxidant activity was described for Slovak samples. The DPPH and ABTS assays discriminated Polish honeys with the lowest antioxidant activity. The highest flavonoid and phenolic acid content was detected in Hungarian and Slovak honeys, while the lowest values were measured in Polish samples. Our study shows that the antioxidant capacity of unifloral goldenrod honeys can be different in various countries of origin, correlating with color intensity and polyphenol content.Plantago lanceolata L. (plantain) is an interesting multipurpose perennial species whose aerial parts are used in herbal medicine due to its precious phytochemicals and are palatable to animals. Moreover, peculiar traits such as drought tolerance, an extended growth season and a deep root system, make plantain a promising pioneer plant for quarry reclamation based on the use of native species. This study evaluated the effects of different environmental conditions and seasons on the accumulation of the bioactive compounds of its aerial organs. An autochthonous plantain population was grown in three locations in Sardinia (Italy). Leaves, peduncles and inflorescences were collected between October 2020 and July 2021. Phenolic contents and antioxidant capacity were determined. The analysis of the individual phenolic compounds was performed using liquid chromatography. In leaves, the content of total phenolics, antioxidant capacity and total flavonoids were significantly influenced by location and season. Total phenolic content ranged from 65 to 240 g gallic acid equivalent kg-1, whereas total flavonoids were from 16 to about 89 g catechin equivalent kg-1. Neochlorogenic, chlorogenic, cryptochlorogenic acids, verbascoside, diosmin and luteolin were identified in the methanolic extracts of leaves, peduncles and inflorescences. Verbascoside was the main antioxidant isolated from plantain extracts. Results evidenced an increasing accumulation pattern of phenolics from vegetative stage to flowering, followed by a decrement towards the seed ripening as well as site-specific differences with amounts of phenolics even 25% higher for same plantain accession.Drought stress restricts the growth of okra (Abelmoschus esculentus L.) primarily by disrupting its physiological and biochemical functions. This study evaluated the role of Ascophyllum nodosum extract (ANE) in improving the drought tolerance of okra. Drought stress (3 days (control), 6 days (mild stress), and 9 days (severe stress)) and 4 doses of ANE (0, 0.1%, 0.2%, and 0.3%) were imposed after 30 days of cultivation. The results indicate that drought stress decreases the chlorophyll content (total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid) but increases the activity of anthocyanin, proline, and antioxidant enzymes such as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT). Physiological and biochemical plant disturbances and visible growth reduction in okra under drought stress were significantly decreased by the application of ANE foliar spray. ANE spray (0.3%) significantly increased the chlorophyll abundance and activity of anthocyanin, proline, and antioxidants (APX, POD, and CAT). ANE regulated and improved biochemical and physiological functions in okra under both drought and control conditions. The results of the current study show that ANE foliar spray may improve the growth performance of okra and result in the development of drought tolerance in okra.The current text provides a comprehensive introduction to essential oils, their biosynthesis, naming, analysis, and chemistry. Importantly, this text quickly brings the reader up to a level of competence in the authentication of essential oils and their components. It gives detailed descriptions of enantiomers and other forms of stereoisomers relevant to the study of natural volatiles and essential oils. The text also describes GC-MS work and provides tips on rapid calculation of arithmetic indices, how to interpret suggested names from the NIST mass spectral library, and what additional efforts are required to validate essential oils and defeat sophisticated adulteration tactics. In brief, essential oils are mixtures of volatile organic compounds that were driven out of the raw plant material in distillation, condensed into an oil that is strongly aroma emitting, and collected in a vessel as the top layer (uncommonly bottom layer) of two phase separated liquids oil and water. Essential oils commonly include components derived from two biosynthetic groups, being terpenes (monoterpenes, sesquiterpenes and their derivatives) and phenylpropanoids (aromatic ring with a propene tail).


トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2024-09-10 (火) 22:25:11